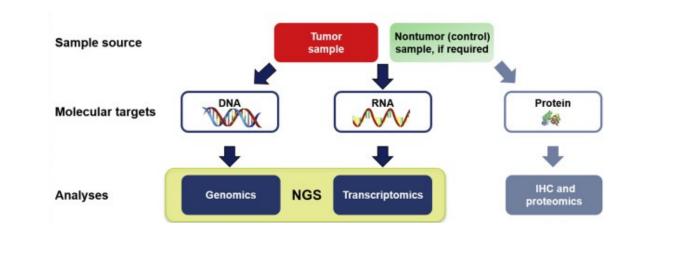
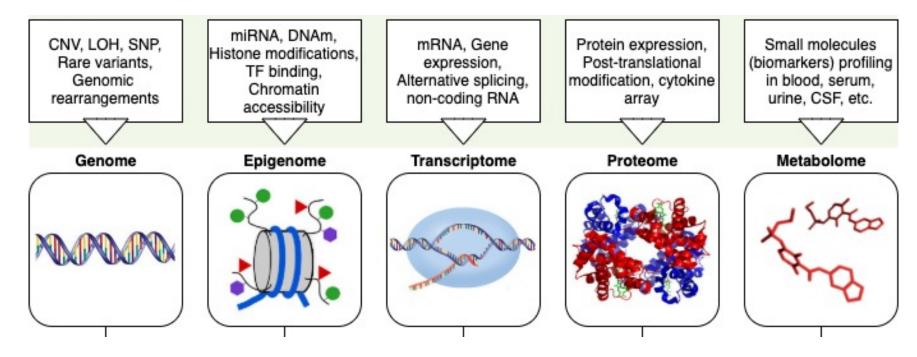
Omics in modern oncology:

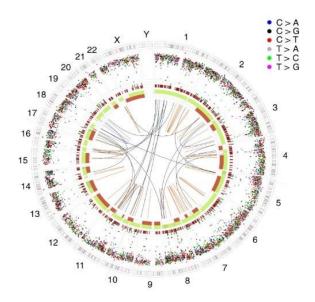
Methods and general applications

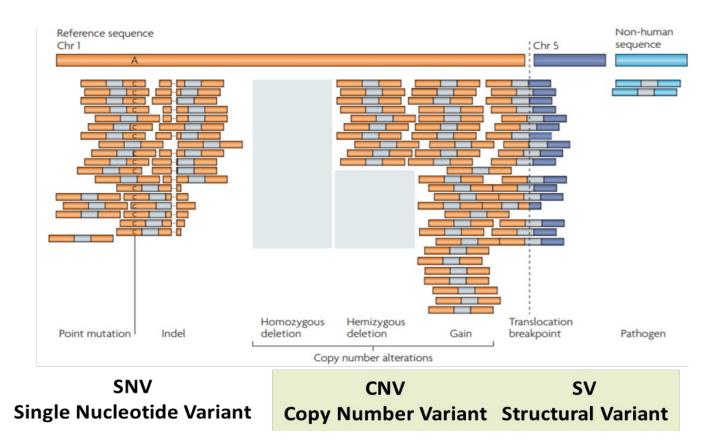
Giampaolo Tortora

Professor of Medical Oncology Director, Medical Oncology and Comprehensive Cancer Center


School of Medicine, Catholic University and Fondazione Policlinico Universitario Gemelli - IRCCS, Rome




Omics in Cancer



Advantages of Whole Genome Sequencing

Re-arrangements and Copy number variations

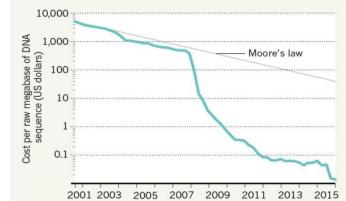
Sequencing data can be mapped and reanalysed at a later stage

WGS initiatives Worldwide

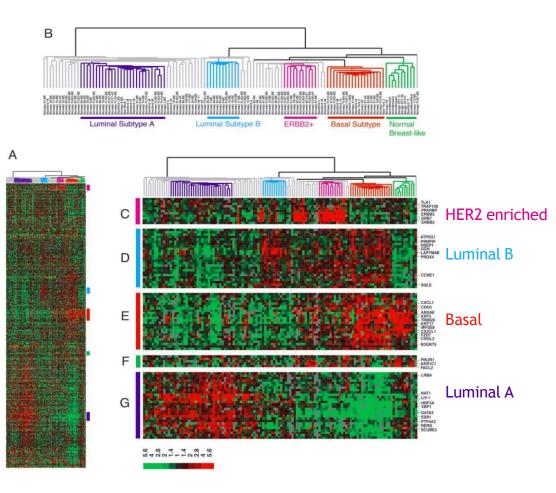
N=2,658 cancers 38 types of cancer

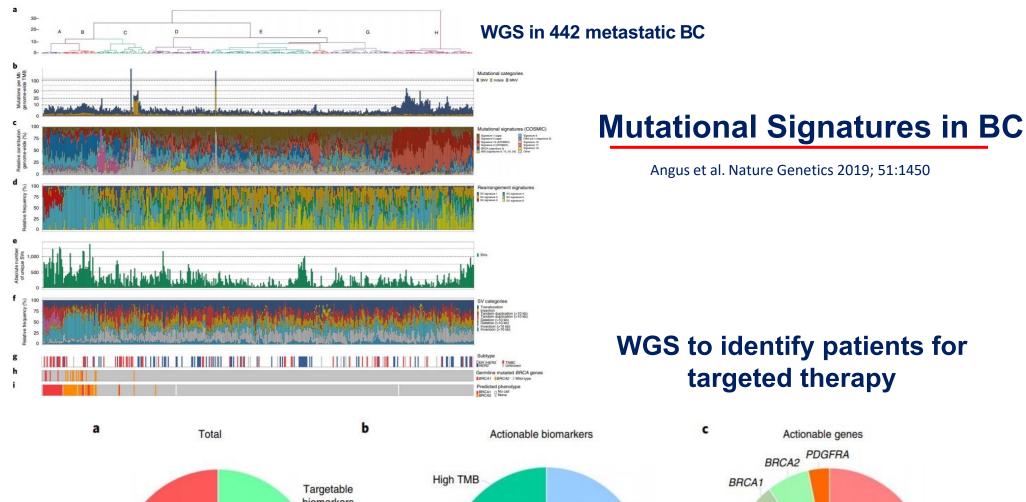
Sequence 100,000 genomes from 85,000 NHS patients affected by a rare disease, or cancer

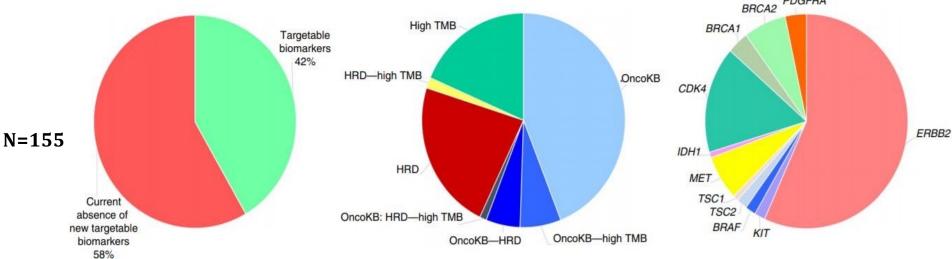
Cancer arm launched in 2014


Berner et al. Current Genetic Medicine Reports 2019; 7:136 Turnbull C. Ann Oncol 2018; 29:784

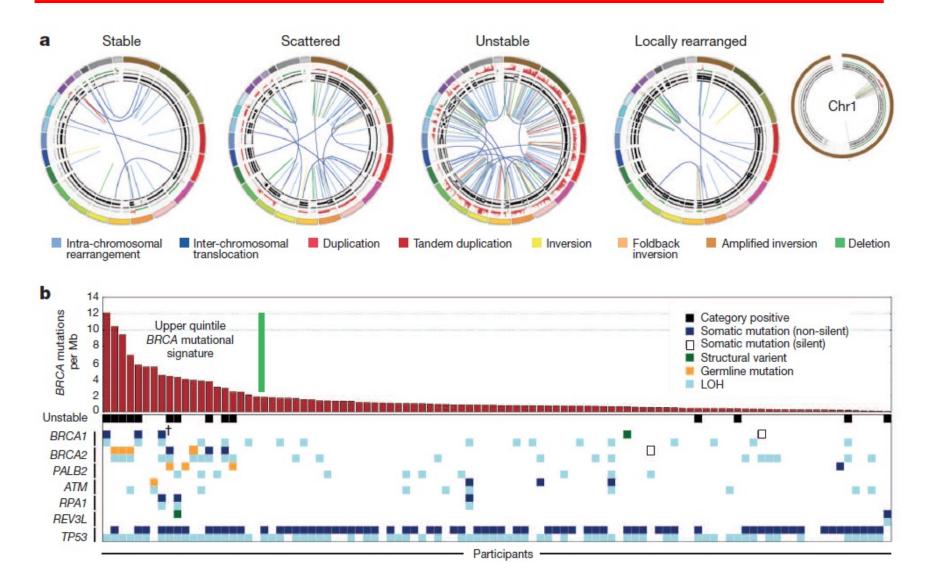
england

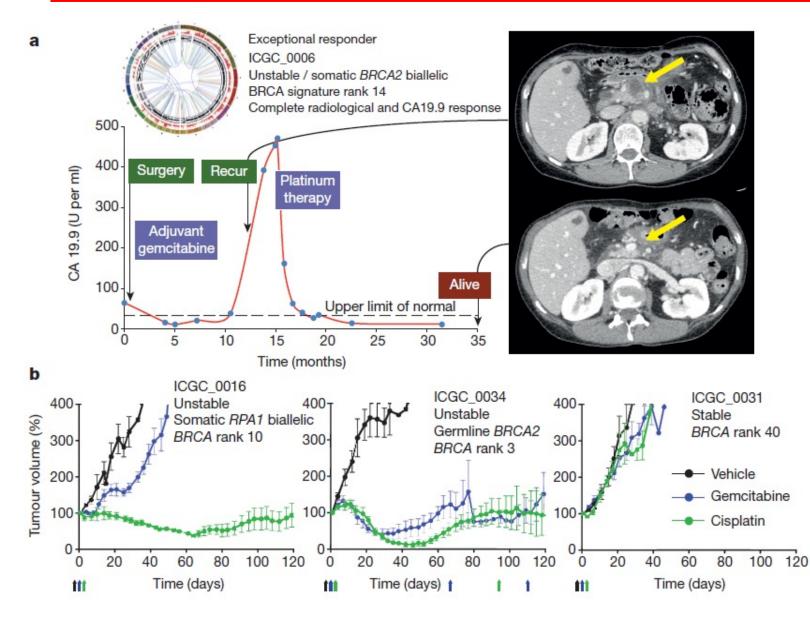

PLUNGING COSTS OF SEQUENCING

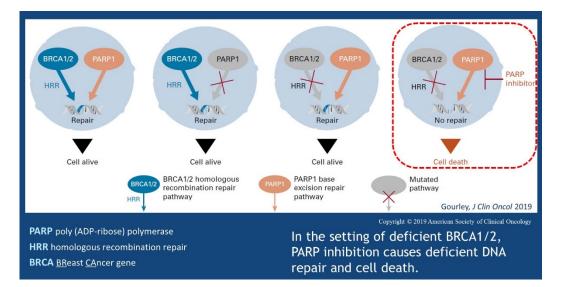

Since 2008, new sequencing technologies have driven the costs of DNA sequencing down faster than the rapid improvement in microprocessor power represented by Moore's Law.

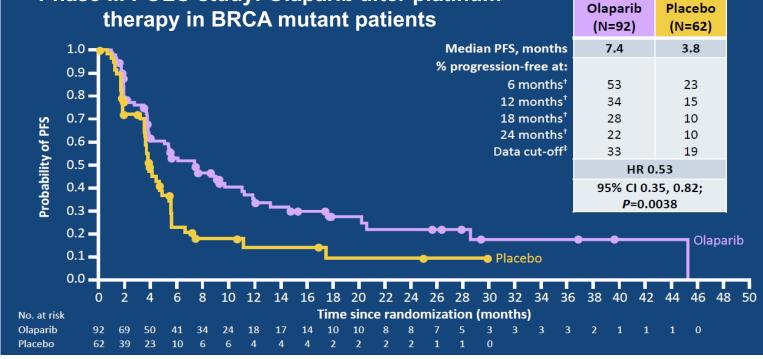


Breast Cancer Intrinsic Subtypes : Diagnosis and Prognosis


- Iuminal A-like : ER+, low proliferat. (Ki67<20%)
- *luminal B-like* : ER+, high proliferat. (Ki67>30%)
 - HER2 negative
 - HER2 positive
- HER2 enriched : ER/PR- ; HER2+
- **Basal-like** : ER/PR/HER2 (TNBC)




Subtypes of pancreatic cancer: Classifying by structural variation


Responses to platinum therapy

PARP inhibition is effective in germline BRCA 1/2 mutant tumors

Phase III POLO study: Olaparib after platinum

Golan T. et al., N Engl J Med 2019;381:317-27

Placebo

Clinical utility HRD deficiency in BC

20 40 60 80 100 Carboplatin 59 of 188 (31.4%) Absolute difference -2.6% (95% Cl. -12.1 to 6.9) Exact P = 0.6664 of 188 (34.0%) Docetaxel Germline BRCA1/2 mutation C Tumor BRCA1/2 mutation 20 40 60 80 20 0 100 0 40 60 80 100 17 of 25 (68.0%) 12 of 18 (66.7%) Mutated BRCA Mutated Absolute difference Absolute difference 31.0% (95% CI, -2.2 to 64.2) 6 of 18 (33.3%) 5 of 14 (35.7%) 34.7% (95% CI, 6.3 to 63.1) Exact P = 0.15Exact P = 0.030 20 40 60 80 100 20 40 60 80 100 0 36 of 128 (28.1%) 23 of 90 (25.6%) Wild-type BRCA Absolute difference Absolute difference Wild-type BRCA -6.4% (95% CI, -17.4 to 4.6) -10.0% (95% CI, -23.4 to 3.4) 50 of 145 (34.5%) Exact P = 0.30 32 of 90 (35.6%) Exact P = 0.20 Interaction test P = 0.01Interaction test P = 0.03d BRCA1 methylation BRCA1 mRNA level 20 0 20 40 60 80 100 0 40 60 80 100 3 of 14 (21.4%) 4 of 14 (28.6%) Absolute difference Absolute difference BRCA1 RNA-lo -36.1% (95% Cl. -68.9 to 3.3) -20.7% (95% Cl, -51.6 to 10.2) Exact P = 0.07 8 of 19 (42.1%) Exact P = 0.28 1 of 17 (64.7% Vet 0 20 40 60 80 100 20 40 60 80 100 26 of 82 (31.7%) 32 of 93 (34.4%) Not BRCA1 mRNA-low Absolute difference Absolute difference 0.9% (95% CI, -13.5 to 15.3) -4.0% (95% CI, -18.1 to 10.1) Exact P = 1.00 24 of 78 (30.8%) 33 of 86 (38,4%) Exact P = 0.64 Interaction test P = 0.07Interaction test P = 0.35Key Carboplatin Docetaxel H 95% CI

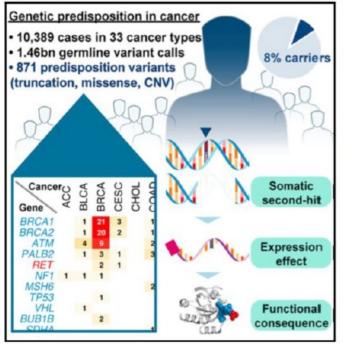
Platinum Salts

Talazoparib in deleterious mutation in HR pathway gene (somatic and germline) other than *BRCA1* or *BRCA2*

Best Response	Response Rate, n (%) Efficacy Evaluable (N=13)					
Complete Response (CR)	0 (0%)					
Partial Response (PR)	4 (31%)					
Stable Disease (SD)	6 (46%)					
Progressive Disease (PD)	3 (23%)					
ORR (CR+PR)	4 (31%)					
CBR (CR+PR+SD \geq 6 months)	7 (54%)					

Gruber et al. J Clin Oncol.2019;37(suppl 15; abstr 3006)

Tutt et al. Nature Medicine 2018; 24:628


PanCancer analysis identifies predisposing germline variants

Cell

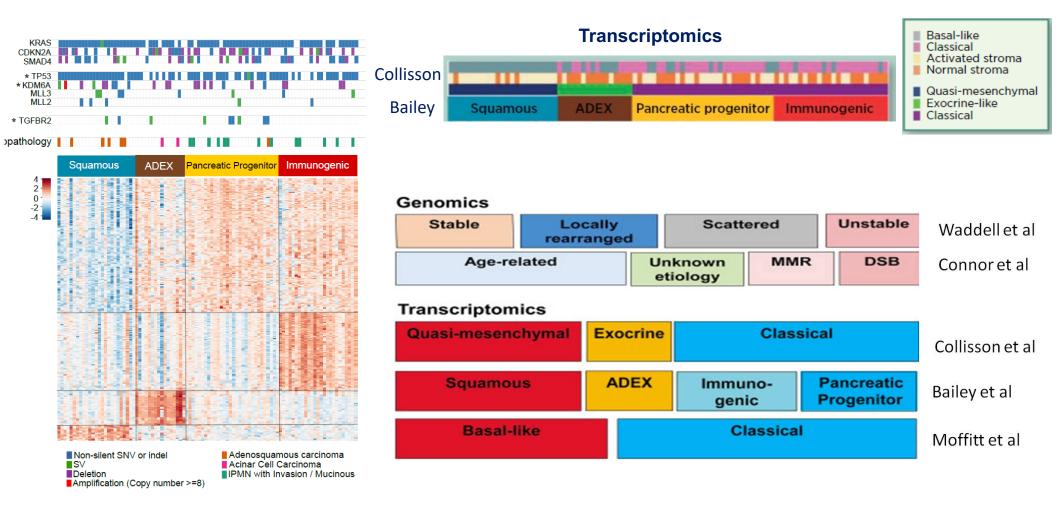
Article

Pathogenic Germline Variants in 10,389 Adult Cancers

Graphical Abstract

Authors

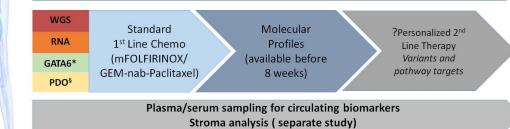
Kuan-lin Huang, R. Jay Mashl, Yige Wu, ..., Sharon E. Plon, Feng Chen, Li Ding


Correspondence

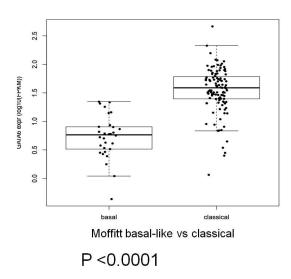
fchen@wustl.edu (F.C.), Iding@wustl.edu (L.D.)

In Brief

A pan-cancer analysis identifies hundreds of predisposing germline variants.

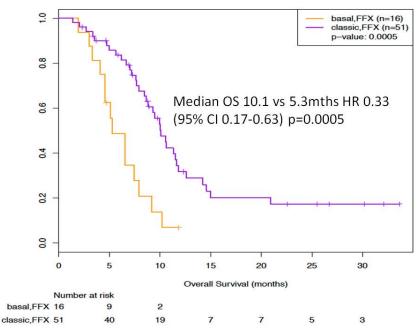

Compared classification from PDAC profiling studies

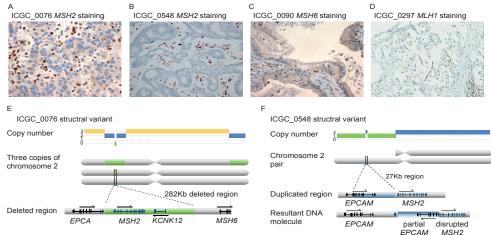
Dreyer S.B. et al. Clin Cancer Res; 23:1638-46, 2017; Le Large et al., Seminars in Cancer Biology, 2017



Prospective Clinical Data Collection/ 8 weekly CT Scan/Repeat Biopsy at Progression

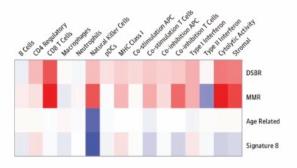
The COMPASS study design


- Secondary endpoints:
 - Correlate genomic subgroups including COSMIC signatures/novel genomic subgroups (eg unstable >200 SV) - with survival
 - RNA classifiers and GATA6 with survival
 - GATA6 expression (RNA) is highly related to Moffitt subtype

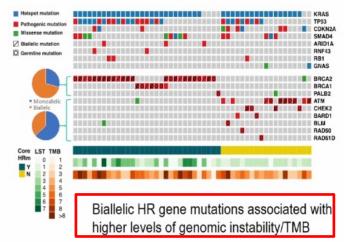

O'Kane ASCO GI 2019; Clin Cancer Res 2020

Lack of GATA6 correlates with basal-like subtype and worse response to mFOLFIRINOX

OS mFFX only n=67



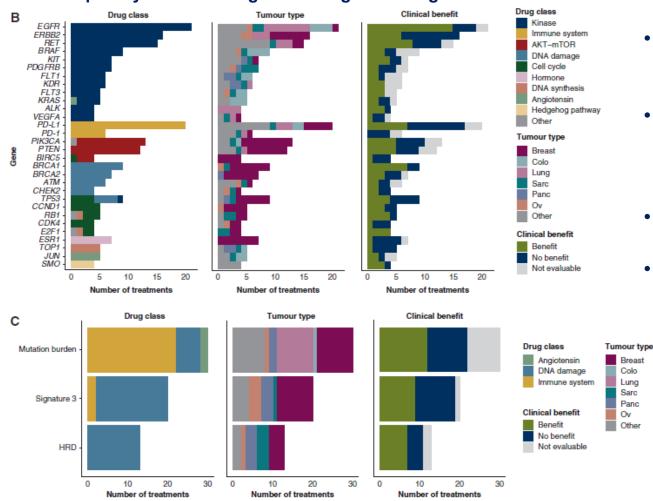
MMR and HDR in PDAC



Humphris et al Gastroenterology 2017;

Mutational Signatures & Increased Immune Activity in PDAC

Heat map median expression immune function gene sets by Signature DSBR: Double strand break repair

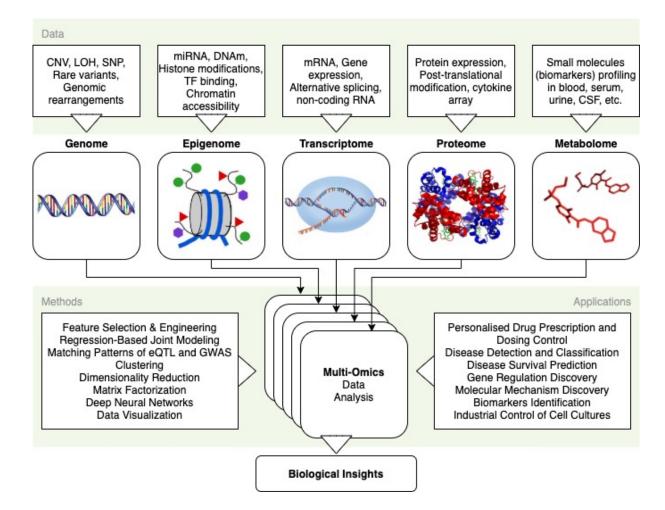


1% PDAC with MMR IHC was the most accurate method to define MMR ORR to pembrolizumab was 62% (5/8)

Lee al Science 2017

Homologous Recombination and DDR mutations increase immunogenicity

Whole-genome and transcriptome analysis enhances precision cancer treatment options



Frequently informative genes and genome signatures

- Samples from 570 patients with advanced or metastatic cancer of diverse types underwent WGTA.
- Clinically actionable targets were identified for 83% of patients; 37% of them received WGTA informed treatments.
 - RNA expression data were particularly informative
 - 46% of treated patients experienced positive clinical benefit.

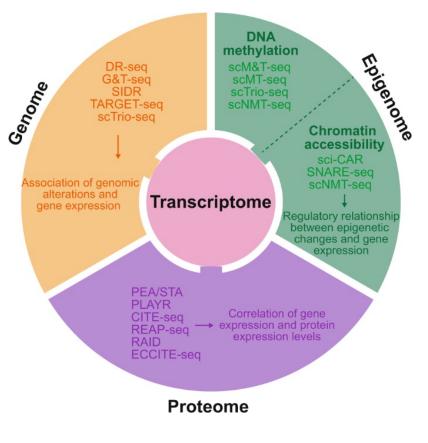
Multiomics in Cancer

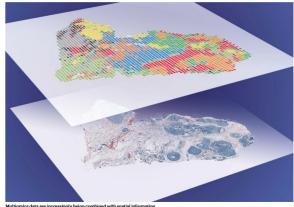
- While a single type of omics can provide a significant amount of information at a specific level, the complexity of intra and extracellular mechanisms can only be addressed by combining several omics approaches to provide a complete picture of cancer pathogenesis and progression
- With Multiomics (the combined use of genomics, transcriptomics, proteomics, metabolomics, and other technologies yet to fully unfold) we can obtain a complete dynamic vision of cancer.

SINGLE-CELL ANALYSIS Enters the multiomics age

A rapidly growing collection of software tools is helping researchers to analyse multiple huge '-omics' data sets. **By Jeffrey M. Perkel**

In-bulk multiomics provide a deep insight into cancer biology, but there are still some limitations and bias with this technology, such as tumor heterogeneity, tumor stroma contamination.

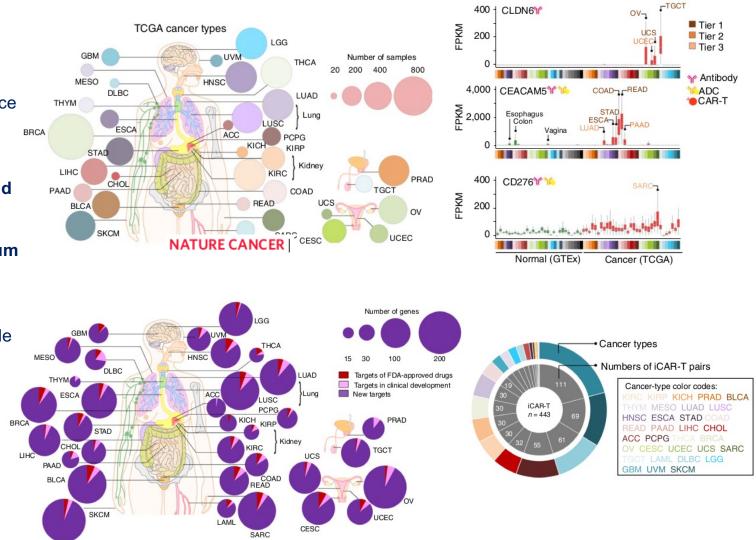

These problems may be overcome with **new multiomics single-cell methods**, able to study the different tumor cell populations


Today is possible to combine single-cell gene expression with single-cell:

- Genomics
- Surface Proteomics
- DNA methylation
- ATAC-seq
- TCR profiling
- Antigen Specificity

Recently, also **spatial transcriptomics** methods were developed to map cancer transcriptome on the tissue

Single Cell DNA sequencing: Fresh tissue or frozen and FFPE* Single Cell RNA sequencing: F<u>resh tissue</u>


spatial transcriptomics

The Cancer Surfaceome Atlas integrates genomic, functional and drug response data to identify actionable targets

Cell-surface proteins are a rich source of immune and targeted therapies

The Cancer Surfaceome Initiative integrating data from single-cell and bulk genomics and transcriptomics,and target actionability created a compendium of the surface proteome (surfaceome)

With this compendium they were able to identify novel target for personalized medicine

Annals of Oncology 0: 1–8, 2018 doi:10.1093/annonc/mdy263

SPECIAL ARTICLE

A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)

J. Mateo¹, D. Chakravarty², R. Dienstmann¹, S. Jezdic³, A. Gonzalez-Perez⁴, N. Lopez-Bigas^{4,5}, C. K. Y. Ng⁶, P. L. Bedard⁷, G. Tortora^{8,9}, J. -Y. Douillard³, E. M. Van Allen¹⁰, N. Schultz², C. Swanton¹¹, F. André^{12*} & L. Pusztai¹³

	Readiness for use in clinical practice	Current examples of genomic alterations			
Tier I (I-A, I-B, I-C)	Targets ready for implementation in routine clinical decisions	HER2 in breast cancer BRCA1/2 in ovarian and breast cancer EGFR, ROS1/ALK in NSCLC TRK, PD1 in multiple cancers BRAF in metastatic melanoma			
<u>Tier II (</u> II-A, II-B)	Investigational targets likely to define patients who benefit from a targeted drug, but additional data needed	PTEN pathway (PIK3CA, AKT1)			
Tier III (III-A, III-B)	Clinical benefit previously demonstrated in other tumour type or for similar molecular targets	BRAF in non-melanoma cancers PALB2 and other non-BRCA DNA repair mutations			
Tier IV (IVA, IVB)	Preclinical evidence of actionability	Hypothetical targets for future clinical testing			
Tier V	Evidence supporting co- targeting approaches	PIK3CA in ER+, HER- breast cancer			
Tier X	Lack of evidence for actionability				

REVIEW ARTICLE

Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group

F. Mosele¹, J. Remon², J. Mateo³, C. B. Westphalen⁴, F. Barlesi¹, M. P. Lolkema⁵, N. Normanno⁶, A. Scarpa⁷, M. Robson⁸, F. Meric-Bernstam⁹, N. Wagle¹⁰, A. Stenzinger¹¹, J. Bonastre^{12,13}, A. Bayle^{1,12,13}, S. Michiels^{12,13}, I. Bièche¹⁴, E. Rouleau¹⁵, S. Jezdic¹⁶, J-Y. Douillard¹⁶, J. S. Reis-Filho¹⁷, R. Dienstmann¹⁸ & F. André^{1,19,20*}

Table 10. List of genomic alterations level I/II/III according to ESCAT in advanced cholangiocarcinoma (CC)							
Gene	Alteration	Prevalence	ESCAT	References			
IDH1	Mutations	20%	IA	Abou-Alfa G. K, et al. Ann Oncol. 2019 ¹²⁹			
FGFR2	Fusions	15%	IB	Vogel A, et al. <i>Ann Oncol.</i> 2019 ¹³⁰			
	MSI-H	2%	IC	Marabelle A, et al. J Clin Oncol. 2020 ¹³¹			
NTRK	Fusions	2%	IC	Doebele RC, et al. <i>Lancet</i> Oncol. 2020 ⁵⁰			
BRAF ^{V600E}	Mutations	5%	IIB	Wainberg Z, et al. J Clin Oncol. 2019 ¹³²			
ERBB2	Amplifications Mutations	10% 2%	IIIA	Javle MM, et al. <i>J Clin Oncol.</i> 2017 ¹³³			
РІКЗСА	Hotspot mutations	7%	IIIA	André F, et al. <i>N Engl J Med.</i> 2019 ⁷²			
BRCA 1/2	Mutations	3%	IIIA	De Bono J, et al. <i>N Engl J Med.</i> 2020 ⁹³			
MET	Amplifications	2%	IIIA	Camidge D, et al. <i>J Clin Oncol.</i> 2018 ⁵²			

The **ESMO** Precision Medicine WG recommended for CCA a targeted multigene NGS-based genomic profiling for the detection of *ESCAT level I* actionable alterations (improved outcomes in clinical trial), such as: IDH1 mutations, FGFR2 and NTRK fusions and MSI-H.

In US: FoundationOne CDx, an assay targeting up to 324 genes, was recently approved as a companion diagnostic test for pemigatinib therapy in patients with CCA with FGFR2 fusions or other rearrangements.

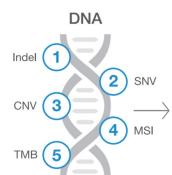
ESCAT, ESMO Scale for Clinical Actionability of molecular Targets (I-IV levels)

The FPG500 Project : Tecnologies and criteria

BIBLIOGRAFIA

nttps://www.iliumina.com keting/documents/products/datashees/trusibil-oncol gy-500-and-ht-data-sheet-1170-2018-010,pdf https://www.alleanzacontroilcancro.it/wp-content/upi Gemelli

PROGRAMMA DI PROFILAZIONE GENOMICA DEI TUMORI


C Mosele F, Remon J, Matte J, Westphalen CB, Ba ma MP, Narmanna V, Scarpa A, Robisan M, Me F, Wagle N, Stenniger A. Bonsstre J, Bayle A Mc O, Rouleau E, Jearlis S, Douillard YY, Reis-Phol S, R, André F. Recommendations for the use of a sequencing (NCS) for patterns with measo a report from the ESMO Precision NetWorkine We

Molecular Lumor Board" (MIH), er garantire al propri pazienti oncologici er terapeutico più appropriato, il biclinico Universitario A. Gemelli IRCCS d'avanguardia, che consente di eseguire noje profilizzioni, genomiche in suberti affetti da lumone, e di un team utidisciptinare di specialisti che valutarà tati emessi, al fine di offrire faccesso ali

> CONTATT Contact Con

SPORTELLO CANCRO: T (=30) 05 30157080 Sportelia.cancro@policlinicogermelli.it Largo Agostino Gemelli 8, 00168 homa www.policlinicogermelli.it

- Microlab STAR-Hamilton for automated library preparation and Illumina ™ Novaseq6000 for sequencing.
- Profiling performed by TruSight Oncology 500 high throughput (TSO500HT, Illumina) (DNA or RNA ≥ 40 ng).
- Samples below the required quantity for TSO500HT, undergo Oncomine Focus assay (Thermofisher) for DNA and Archer's FusionPlex Lung panel for RNA evaluation.

RNA

di splicing

Fusione

	ACMIT	Diai	GILD	1741VC/4	CIL/4	10/2	10040-0004	701010	PENILD	NUMATIT	TOLDT
	ACVR1B	BTK	DAXX	FANCC	GL/1	IKBKE	MAPK1	NRG1	PPP2R1A	RYBP	TCF3
	AKT1	C11orf30	DCUN1D1	FANCD2	GNA11	IKZF1	MAPK3	NSD1	PPP2R2A	SDHA	TCF7L2
	AKT2	CALR	DDR2	FANCE	GNA13	IL10	MAX	NTRK1	PPP6C	SDHAF2	TERC
	AKT3	CARD11	DDX41	FANCE	GNAQ	IL7R	MCL1	NTRK2	PRDM1	SDHB	TERT
	ALK	CASP8	DHX15	FANCG	GNAS	INHA	MDC1	NTRK3	PREX2	SDHC	TET1
	ALOX12B	CBFB	DICER1	FANCI	GPR124	INHBA	MDM2	NUP93	PRKAR1A	SDHD	TET2
	ANKRD11	CBL	DIS3	FANCL	GPS2	INPP4A	MDM4	NU7M1	PRKCI	SETBP1	TFE3
	ANKRD26	CCND1	DNAJB1	FAS	GREM1	INPP4B	MED12	PAK1	PRKDC	SETD2	TFRC
	APC	CCND2	DNMT1	FAT1	GRIN2A	INSR	MEF2B	PAK3	PRSS8	SF3B1	TGFBR1
	AR	CCND3	DNMT3A	FBXW7	GRM3	IRF2	MENT	PAK7	PTCH1	SH2B3	TGFBR2
	ARAF	CCNE1	DNMT3B	FGF1	GSK3B	IRF4	MET	PALB2	PTEN	SH2D1A	TMEM127
	ARFRP1	CD274	DOT1L	FGF10	H3F3A	IRS1	MGA	PARK2	PTPN11	SHQ1	TMPRSS2
SNIV	ARID1A	CD276	E2F3	FGF14	H3F3B	IRS2	MITE	PARP1	PTPRD	SLIT2	TNFA/P3
OIV	ARID1B	CD74	EED	FGF19	H3F3C	JAK1	MLH1	PAX3	PTPRS	SLX4	TNFRSF14
	ARID2	CD79A	EGFL7	FGF2	HGF	JAK2	MLL	PAX5	PTPRT	SMAD2	TOP1
	ARID5B	CD79B	EGFR	FGF23	HIST1H1C	JAK3	MLLT3	PAX7	QK/	SMAD3	TOP2A
	ASXL1	CDC73	EIF1AX	FGF3	HIST1H2BD	JUN	MPL	PAX8	RAB35	SMAD4	TP53
	ASXL2	CDH1	EIF4A2	FGF4	HIST1H3A	KAT6A	MRE11A	PBRM1	RAC1	SMARCA4	TP63
'	ATM	CDK12	EIF4E	FGF5	HIST1H3B	KDM5A	MSH2	PDCD1	RAD21	SMARCB1	TRAF2
MSI	ATR	CDK4	EML4	FGF6	HIST1H3C	KDM5C	MSH3	PDCD1LG2	RAD50	SMARCD1	TRAF7
NO1	ATRX	CDK6	EP300	FGF7	HIST1H3D	KDM6A	MSH6	PDGFRA	RAD51	SMC1A	TSC1
	AUBKA	CDK8	EPGAM	FGF8	HIST1H3E	KDB	MST1	PDGFRB	RAD51B	SMC3	TSC2
	AURKB	CDKNIA	EPHA3	FGF9	HIST1H3F	KEAP1	MSTIR	PDK1	RAD51C	SMO	TSHR
	AXIN1	CDKN1B	EPHA5	FGFR1	HIST1H3G	KEL	MTOR	PDPK1	RAD51D	SNCAIP	U2AF1
	AXIN2	CDKN2A	EPHA7	FGFR2	HISTIH3H	KIF5B	MUTYH	PGR	RAD52	SOCS1	VEGFA
	AXL	CDKN2A CDKN2B	EPHB1	FGFR3	HIST1H3I	KIT	MYB	PHF6	RAD54L	SOX10	VHL
	B2M	CDKN2B CDKN2C	ERBB2	FGFR4	HISTIHSJ	KLF4	MYC	PHOX2B	RAF1	SOX10	VTCNI
	BAP1	GEBPA	ERBB3	FGFA4	HIST2H3A	KLHL6	MYCL1	PIK3C2B	RANBP2	SOX17	WISP3
	BARD1	CENPA	ERBB4	FLCN	HIST2H3C	KMT2B	MYCN	PIK3C2B	RARA	SOX9	WT1
	BBC3	CHD2	ERCC1	FLI1	HIST2H3C HIST2H3D	KMT2G	MYD88	PIK3C2G	RASA1	SPEN	XIAP
	BCL10	CHD2 CHD4	ERCC2	FLTT	HIST2H3D HIST3H3	KMT2D	MYOD1	PIK3C3 PIK3GA	RB1	SPOP	XPO1
	BCL10 BCL2			FLT3		KRAS	NAB2		RBM10	SPOP SPTA1	
	BCL2 BCL2L1	CHEK1 CHEK2	ERCC3 ERCC4	FLT4	HLA-A HLA-B	LAMP1	NBN	PIK3CB PIK3CD	RECQL4	SRC	XRCC2 YAP1
	BCL2L11	CIC	ERCC5	FOXA1	HLA-C	LATS1	NCOA3	PIK3CG	REL	SRSF2	YES1
	BCL2L2	CREBBP	ERG	FOXL2	HNF1A	LATS2	NCOR1	PIK3R1	RET	STAG1	ZBTB2
	BCL6	CRKL	ERRF11	FOXO1	HNRNPK	LMO1	NEGR1	PIK3R2	RFWD2	STAG2	ZBTB7A
	BCOR	CRLF2	ESR1	FOXP1	HOXB13	LRP1B	NF1	PIK3R3	RHEB	STAT3	ZFHX3
	BCORL1	CSF1R	ETS1	FRS2	HRAS	LYN	NF2	PIM1	RHOA	STAT4	ZNF217
	BCR	CSF3R	ETV1	FUBP1	HSD3B1	LZTR1	NFE2L2	PLCG2	RICTOR	STAT5A	ZNF703
	BIRC3	CSNK1A1	ETV4	FYN	HSP90AA1	MAG/2	NFKBIA	PLK2	RIT1	STAT5B	ZRSR2
	BLM	CTCF	ETV5	GABRA6	ICOSLG	MALT1	NKX2-1	PMAIP1	RNF43	STK11	
	BMPR1A	CTLA4	ETV6	GATA 1	ID3	MAP2K1	NKX3-1	PMS1	ROS1	STK40	
	BRAF	CTNNA1	EWSR1	GATA2	IDH1	MAP2K2	NOTCH1	PMS2	RPS6KA4	SUFU	
	BRCA1	CTNNB1	EZH2	GATA3	IDH2	MAP2K4	NOTCH2	PNRC1	RPS6KB1	SUZ12	
	BRCA2	CUL3	FAM123B	GATA4	IFNGR1	MAP3K1	NOTCH3	POLD1	RPS6KB2	SYK	
_	ABL1	BCL2	CSF1R	ESR1	EWSR1	FLI1	KIF5B	MSH2	NRG1	PAX7	RAF1
	AKT3	BRAF	EGFR	ETS1	FGFR1	FLT1	KIT	MYC	NTRK1	PDGFRA	RET
\rightarrow	ALK	BRCA1	EML4	ETV1	FGFR2	FLT3	MET	NOTCH1	NTRK2	PDGFRB	ROS1
	AR	BRCA2	ERBB2	ETV4	FGFR3	JAK2	MLL	NOTCH2	NTRK3	PIK3CA	RPS6KB1
	AXL	CDK4	ERG	ETV5	FGFR4	KDR	MLLT3	NOTCH3	PAX3	PPARG	TMPRSS2

Tumor type	Target				
Breast	PIK3CA				
Lung	EGFR				
	ALK				
	ROS1				
	BRAF				
	NTRK				
	RET				
Ovary	BRCA 1/2				
Pancreas	BRCA 1/2				
	NTRK				
Prostate	BRCA 1/2				
Melanoma	BRAF				
GIST	c-kit				
	PDGFRα				
Colorectal	KRAS				
	NRAS				
	BRAF				
	NTRK				
Thyroid	RET				
Endometrium	POLE				

FPG500 profiling of 1057 pts at 0ct 14, 2022